MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrically addressable vesicles: Tools for dielectrophoresis metrology

Author(s)
Desai, Salil P.; Vahey, Michael D.; Voldman, Joel
Thumbnail
DownloadVoldman_Electrically addressable.pdf (1.442Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical propserties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing poly(ethylene glycol) (PEG) brushes attached to their hydrophilic headgroup in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature forms the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem.
Date issued
2009-02
URI
http://hdl.handle.net/1721.1/73575
Department
Institute for Medical Engineering and Science; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Langmuir
Publisher
American Chemical Society (ACS)
Citation
Desai, Salil P., Michael D. Vahey, and Joel Voldman. “Electrically Addressable Vesicles: Tools for Dielectrophoresis Metrology.” Langmuir 25.6 (2009): 3867–3875.
Version: Author's final manuscript
ISSN
0743-7463
1520-5827

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.