MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error exponents for composite hypothesis testing of Markov forest distributions

Author(s)
Tan, Vincent Yan Fu; Anandkumar, Animashree; Willsky, Alan S.
Thumbnail
DownloadWillsky_Erroe exponents.pdf (197.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The problem of composite binary hypothesis testing of Markov forest (or tree) distributions is considered. The worst-case type-II error exponent is derived under the Neyman-Pearson formulation. Under simple null hypothesis, the error exponent is derived in closed-form and is characterized in terms of the so-called bottleneck edge of the forest distribution. The least favorable distribution for detection is shown to be Markov on the second-best max-weight spanning tree with mutual information edge weights. A necessary and sufficient condition to have positive error exponent is derived.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/73578
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2010
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Tan, Vincent Y. F., Animashree Anandkumar, and Alan S. Willsky. “Error Exponents for Composite Hypothesis Testing of Markov Forest Distributions.” IEEE International Symposium on Information Theory Proceedings (ISIT), 2010. 1613–1617. © Copyright 2010 IEEE
Version: Final published version
ISBN
978-1-4244-7891-0
978-1-4244-7890-3

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.