MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Message-Passing Algorithm for Optimizing Decentralized Detection Networks

Author(s)
Kreidl, Olivier Patrick; Willsky, Alan S.
Thumbnail
DownloadWillsky_An efficient.pdf (671.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A promising feature of emerging wireless sensor networks is the opportunity for each spatially-distributed node to measure its local state and transmit only information relevant to effective global decision-making. An equally important design objective, as a result of each node's finite power, is for measurement processing to satisfy explicit constraints on, or perhaps make selective use of, the distributed algorithmic resources. We formulate this multi-objective design problem within the Bayesian decentralized detection paradigm, modeling resource constraints by a directed acyclic network with low-rate, unreliable communication links. Existing team theory establishes when necessary optimality conditions reduce to a convergent iterative algorithm to be executed offline (i.e., before measurements are processed). Even so, this offline algorithm has exponential complexity in the number of nodes, and its distributed implementation assumes a fully-connected communication network. We state conditions under which the offline algorithm admits an efficient message-passing interpretation, featuring linear complexity and a natural distributed implementation. We experiment with a simulated network of binary detectors, applying the message-passing algorithm to optimize the achievable tradeoff between global detection performance and network-wide online communication. The empirical analysis also exposes a design tradeoff between constraining in-network processing to preserve resources (per online measurement) and then having to consume resources (per offline reorganization) to maintain detection performance.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/73604
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Kreidl, O.P., and A.S. Willsky. “An Efficient Message-Passing Algorithm for Optimizing Decentralized Detection Networks.” IEEE Transactions on Automatic Control 55.3 (2010): 563–578. © Copyright 2010 IEEE
Version: Final published version
ISSN
0018-9286
1558-2523

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.