MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for solving rubik's cubes

Author(s)
Demaine, Erik D.; Demaine, Martin L.; Eisenstat, Sarah Charmian; Lubiw, Anna; Winslow, Andrew
Thumbnail
DownloadDemaine-Algoritms for solving.pdf (212.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The Rubik’s Cube is perhaps the world’s most famous and iconic puzzle, well-known to have a rich underlying mathematical structure (group theory). In this paper, we show that the Rubik’s Cube also has a rich underlying algorithmic structure. Specifically, we show that the n ×n ×n Rubik’s Cube, as well as the n ×n ×1 variant, has a “God’s Number” (diameter of the configuration space) of Θ(n [superscript 2]/logn). The upper bound comes from effectively parallelizing standard Θ(n [superscript 2]) solution algorithms, while the lower bound follows from a counting argument. The upper bound gives an asymptotically optimal algorithm for solving a general Rubik’s Cube in the worst case. Given a specific starting state, we show how to find the shortest solution in an n ×O(1) ×O(1) Rubik’s Cube. Finally, we show that finding this optimal solution becomes NP-hard in an n ×n ×1 Rubik’s Cube when the positions and colors of some cubies are ignored (not used in determining whether the cube is solved).
Description
19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/73771
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Algorithms – ESA 2011
Publisher
Springer Berlin / Heidelberg
Citation
Demaine, Erik D. et al. “Algorithms for Solving Rubik’s Cubes.” Algorithms – ESA 2011. Ed. Camil Demetrescu & Magnús M. Halldórsson. LNCS Vol. 6942. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 689–700.
Version: Author's final manuscript
ISBN
978-3-642-23718-8
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.