MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

O(1)-approximations for maximum movement problems

Author(s)
Berman, Piotr; Demaine, Erik D.; Zadimoghaddam, Morteza
Thumbnail
DownloadDemaine-0(1) approximations.pdf (276.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We develop constant-factor approximation algorithms for minimizing the maximum movement made by pebbles on a graph to reach a configuration in which the pebbles form a connected subgraph (connectivity), or interconnect a constant number of stationary nodes (Steiner tree). These problems model the minimization of the total time required to reconfigure a robot swarm to achieve a proximity (e.g., radio) network with these connectivity properties. Our approximation factors are tight up to constant factors, as none of these problems admit a (2 − ε)-approximation assuming P ≠ NP.
Description
14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/73853
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
Publisher
Springer Berlin / Heidelberg
Citation
Berman, Piotr, Erik D. Demaine, and Morteza Zadimoghaddam. “O(1)-Approximations for Maximum Movement Problems.” Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Ed. Leslie Ann Goldberg et al. LNCS Vol. 6845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 62–74.
Version: Author's final manuscript
ISBN
978-3-642-22934-3
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.