Show simple item record

dc.contributor.authorYu, Meng-Day (Mandel)
dc.contributor.authorM’Raihi, David
dc.contributor.authorSowell, Richard
dc.contributor.authorDevadas, Srinivas
dc.date.accessioned2012-10-10T18:38:19Z
dc.date.available2012-10-10T18:38:19Z
dc.date.issued2011-09
dc.date.submitted2011-10
dc.identifier.isbn978-3-642-23950-2
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/73862
dc.description13th International Workshop, Nara, Japan, September 28 – October 1, 2011. Proceedingsen_US
dc.description.abstractA lightweight and secure key storage scheme using silicon Physical Unclonable Functions (PUFs) is described. To derive stable PUF bits from chip manufacturing variations, a lightweight error correction code (ECC) encoder / decoder is used. With a register count of 69, this codec core does not use any traditional error correction techniques and is 75% smaller than a previous provably secure implementation, and yet achieves robust environmental performance in 65nm FPGA and 0.13μ ASIC implementations. The security of the syndrome bits uses a new security argument that relies on what cannot be learned from a machine learning perspective. The number of Leaked Bits is determined for each Syndrome Word, reducible using Syndrome Distribution Shaping. The design is secure from a min-entropy standpoint against a machine-learning-equipped adversary that, given a ceiling of leaked bits, has a classification error bounded by ε. Numerical examples are given using latest machine learning results.en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-23951-9_24en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleLightweight and secure PUF key storage using limits of machine learningen_US
dc.typeArticleen_US
dc.identifier.citationYu, Meng-Day et al. “Lightweight and Secure PUF Key Storage Using Limits of Machine Learning.” Cryptographic Hardware and Embedded Systems – CHES 2011. Ed. Bart Preneel & Tsuyoshi Takagi. LNCS Vol. 6917. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 358–373.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDevadas, Srinivas
dc.relation.journalCryptographic Hardware and Embedded Systems – CHES 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsYu, Meng-Day; M’Raihi, David; Sowell, Richard; Devadas, Srinivasen
dc.identifier.orcidhttps://orcid.org/0000-0001-8253-7714
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record