Show simple item record

dc.contributor.authorLiu, Ce
dc.contributor.authorFreeman, William T.
dc.date.accessioned2012-10-10T19:05:13Z
dc.date.available2012-10-10T19:05:13Z
dc.date.issued2010-09
dc.date.submitted2010-09
dc.identifier.isbn978-3-642-15557-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/73866
dc.description11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IIIen_US
dc.description.abstractAlthough the recent advances in the sparse representations of images have achieved outstanding denosing results, removing real, structured noise in digital videos remains a challenging problem. We show the utility of reliable motion estimation to establish temporal correspondence across frames in order to achieve high-quality video denoising. In this paper, we propose an adaptive video denosing framework that integrates robust optical flow into a non-local means (NLM) framework with noise level estimation. The spatial regularization in optical flow is the key to ensure temporal coherence in removing structured noise. Furthermore, we introduce approximate K-nearest neighbor matching to significantly reduce the complexity of classical NLM methods. Experimental results show that our system is comparable with the state of the art in removing AWGN, and significantly outperforms the state of the art in removing real, structured noise.en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-15558-1_51en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleA high-quality video denoising algorithm based on reliable motion estimationen_US
dc.typeArticleen_US
dc.identifier.citationHutchison, David et al. “A High-Quality Video Denoising Algorithm Based on Reliable Motion Estimation.” Computer Vision – ECCV 2010. Ed. Kostas Daniilidis, Petros Maragos, & Nikos Paragios. LNCS Vol. 6313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 706–719.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorFreeman, William T.
dc.relation.journalComputer Vision – ECCV 2010en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsLiu, Ce; Freeman, William T.en
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record