MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene

Author(s)
Song, Justin Chien Wen; Reizer, Michael Y.; Levitov, Leonid
Thumbnail
DownloadSong-2012-Disorder-assisted electron-phonon scattering.pdf (383.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We predict that graphene is a unique system where disorder-assisted scattering (supercollisions) dominates electron-lattice cooling over a wide range of temperatures, up to room temperature. This is so because for momentum-conserving electron-phonon scattering the energy transfer per collision is severely constrained due to a small Fermi surface size. The characteristic T[superscript 3] temperature dependence and power-law cooling dynamics provide clear experimental signatures of this new cooling mechanism. The cooling rate can be changed by orders of magnitude by varying the amount of disorder providing means for a variety of new applications that rely on hot-carrier transport.
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/73875
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Song, Justin, Michael Reizer, and Leonid Levitov. “Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene.” Physical Review Letters 109.10 (2012). © 2012 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.