Show simple item record

dc.contributor.authorWiens, J.
dc.contributor.authorGuttag, John V.
dc.date.accessioned2012-10-11T18:45:04Z
dc.date.available2012-10-11T18:45:04Z
dc.date.issued2010-09
dc.date.submitted2010-09
dc.identifier.isbn978-1-4244-7319-9
dc.identifier.isbn978-1-4244-7318-2
dc.identifier.issn0276-6547
dc.identifier.urihttp://hdl.handle.net/1721.1/73888
dc.description.abstractA major challenge in applying machine learning techniques to the problem of heartbeat classification is dealing effectively with inter-patient differences in electrocardiograms (ECGs). Inter-patient differences create a need for patient-specific classifiers, since there is no a priori reason to assume that a classifier trained on data from one patient will yield useful results when applied to a different patient. Unfortunately, patient-specific classifiers come at a high cost, since they require a labeled training set. Using active learning, we show that one can drastically reduce the amount of patient-specific labeled training data required to build a highly accurate patient-specific binary heartbeat classifier for identifying ventricular ectopic beats. Tested on all 48 half-hour ECG recordings from the MIT-BIH Arrhythmia Database, our approach achieves an average sensitivity of 96.2% and specificity of 99.9%. The average number of beats needed to train each patient-specific classifier was less than 37 beats, approximately 30 seconds of data.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5737921&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5737883%29%26rowsPerPage%3D50en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titlePatient-Adaptive Ectopic Beat Classification using Active Learningen_US
dc.typeArticleen_US
dc.identifier.citationJ. Wiens, J.V. Guttag. "Patient-Adaptive Ectopic Beat Classification using Active Learning" Proceedings of the 2010 Computing in Cardiology, IEEE. © Copyright 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWiens, J.
dc.contributor.mitauthorGuttag, John V.
dc.relation.journalProceedings of the 2010 Computing in Cardiologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0992-0906
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record