Show simple item record

dc.contributor.authorChaudhuri, Swarat
dc.contributor.authorSolar-Lezama, Armando
dc.date.accessioned2012-10-11T20:10:04Z
dc.date.available2012-10-11T20:10:04Z
dc.date.issued2011-07
dc.date.submitted2011-07
dc.identifier.isbn978-3-642-22109-5
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/73901
dc.description.abstractWe study the foundations of smooth interpretation, a recently-proposed program approximation scheme that facilitates the use of local numerical search techniques (e.g., gradient descent) in program analysis and synthesis. While the popular techniques for local optimization works well only on relatively smooth functions, functions encoded by real-world programs are infested with discontinuities and local irregular features. Smooth interpretation attenuates such features by taking the convolution of the program with a Gaussian function, effectively replacing discontinuous switches in the program by continuous transitions. In doing so, it extends to programs the notion of Gaussian smoothing, a popular signal-processing technique used to filter noise and discontinuities from signals. Exact Gaussian smoothing of programs is undecidable, so algorithmic implementations of smooth interpretation must necessarily be approximate. In this paper, we characterize the approximations carried out by such algorithms. First, we identify three correctness properties—soundness, robustness, and β-robustness—that an approximate smooth interpreter should satisfy. In particular, a smooth interpreter is sound if it computes an abstraction of a program’s “smoothed” semantics, and robust if it has arbitrary-order derivatives in the input variables at every point in its input space. Second, we describe the design of an approximate smooth interpreter that provably satisfies these properties. The interpreter combines program abstraction using a new domain with symbolic calculation of convolution.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-0953507)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-22110-1_22en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceOther University Web Domainen_US
dc.titleSmoothing a program soundly and robustlyen_US
dc.typeArticleen_US
dc.identifier.citationChaudhuri, Swarat, and Armando Solar-Lezama. “Smoothing a Program Soundly and Robustly.” Computer Aided Verification. Ed. Ganesh Gopalakrishnan & Shaz Qadeer. LNCS Vol. 6806. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 277–292.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorSolar-Lezama, Armando
dc.relation.journalComputer Aided Verificationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsChaudhuri, Swarat; Solar-Lezama, Armandoen
dc.identifier.orcidhttps://orcid.org/0000-0001-7604-8252
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record