dc.contributor.author | Demaine, Erik D. | |
dc.contributor.author | Eisenstat, Sarah Charmian | |
dc.date.accessioned | 2012-10-12T14:57:06Z | |
dc.date.available | 2012-10-12T14:57:06Z | |
dc.date.issued | 2011-08 | |
dc.date.submitted | 2011-08 | |
dc.identifier.isbn | 978-3-642-22299-3 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/73923 | |
dc.description | 12th International Symposium, WADS 2011, New York, NY, USA, August 15-17, 2011. Proceedings | en_US |
dc.description.abstract | Planar configurations of fixed-angle chains and trees are well studied in polymer science and molecular biology. We prove that it is strongly NP-hard to decide whether a polygonal chain with fixed edge lengths and angles has a planar configuration without crossings. In particular, flattening is NP-hard when all the edge lengths are equal, whereas a previous (weak) NP-hardness proof used lengths that differ in size by an exponential factor. Our NP-hardness result also holds for (nonequilateral) chains with angles in the range [60° − ε,180°], whereas flattening is known to be always possible (and hence polynomially solvable) for equilateral chains with angles in the range (60°,150°) and for general chains with angles in the range [90°,180°]. We also show that the flattening problem is strongly NP-hard for equilateral fixed-angle trees, even when every angle is either 90° or 180°. Finally, we show that strong NP-hardness carries over to the previously studied problems of computing the minimum or maximum span (distance between endpoints) among non-crossing planar configurations. | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer Berlin / Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-22300-6_27 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Flattening fixed-angle chains is strongly NP-hard | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Demaine, Erik D., and Sarah Eisenstat. “Flattening Fixed-Angle Chains Is Strongly NP-Hard.” Algorithms and Data Structures. Ed. Frank Dehne, John Iacono, & Jörg-Rüdiger Sack. LNCS Vol. 6844. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 314–325. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Demaine, Erik D. | |
dc.contributor.mitauthor | Eisenstat, Sarah Charmian | |
dc.relation.journal | Algorithms and Data Structures | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
dspace.orderedauthors | Demaine, Erik D.; Eisenstat, Sarah | en |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
dc.identifier.orcid | https://orcid.org/0000-0002-3182-1675 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |