Show simple item record

dc.contributor.authorTulabandhula, Theja
dc.contributor.authorRudin, Cynthia
dc.contributor.authorJaillet, Patrick
dc.date.accessioned2012-10-12T16:09:40Z
dc.date.available2012-10-12T16:09:40Z
dc.date.issued2011-10
dc.date.submitted2011-10
dc.identifier.isbn978-3-642-24872-6
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/73935
dc.descriptionSecond International Conference, ADT 2011, Piscataway, NJ, USA, October 26-28, 2011. Proceedingsen_US
dc.description.abstractThe goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a “repair crew,” which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but the failure probabilities are not known and must be estimated. If there is uncertainty in the failure probability estimates, we take this uncertainty into account in an unusual way; from the set of acceptable models, we choose the model that has the lowest cost of applying it to the subsequent routing task. In a sense, this procedure agrees with a managerial goal, which is to show that the data can support choosing a low-cost solution.en_US
dc.description.sponsorshipFulbright Program (International Fulbright Science and Technology Award)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Energy Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1053407)en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-24873-3_20en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleThe Machine Learning and Traveling Repairman Problemen_US
dc.typeArticleen_US
dc.identifier.citationTulabandhula, Theja, Cynthia Rudin, and Patrick Jaillet. “The Machine Learning and Traveling Repairman Problem.” Algorithmic Decision Theory. Ed. Ronen I. Brafman, Fred S. Roberts, & Alexis Tsoukiàs. LNCS Vol. 6992. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 262–276.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorTulabandhula, Theja
dc.contributor.mitauthorRudin, Cynthia
dc.contributor.mitauthorJaillet, Patrick
dc.relation.journalAlgorithmic Decision Theoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsTulabandhula, Theja; Rudin, Cynthia; Jaillet, Patricken
dc.identifier.orcidhttps://orcid.org/0000-0002-8585-6566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record