dc.contributor.author | Raviv, Tammy Riklin | |
dc.contributor.author | Van Leemput, Koen | |
dc.contributor.author | Wells, William M. | |
dc.contributor.author | Golland, Polina | |
dc.date.accessioned | 2012-10-15T13:57:44Z | |
dc.date.available | 2012-10-15T13:57:44Z | |
dc.date.issued | 2009-10 | |
dc.date.submitted | 2009-09 | |
dc.identifier.isbn | 978-3-642-04267-6 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/73950 | |
dc.description | 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part I | en_US |
dc.description.abstract | Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a joint segmentation of corresponding, aligned structures in the entire population that does not require a probability atlas. Instead, a latent atlas, initialized by a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The proposed method is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method by segmenting 50 brain MR volumes. Segmentation accuracy for cortical and subcortical structures approaches the quality of state-of-the-art atlas-based segmentation results, suggesting that the latent atlas method is a reasonable alternative when existing atlases are not compatible with the data to be processed. | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NCRR NAC P41-RR13218) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NINDS R01-NS051826) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NCRR mBIRN U24-RR021382) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Grant 0642971) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer Berlin / Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-04268-3_34 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Joint Segmentation of Image Ensembles via Latent Atlases | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Riklin Raviv, Tammy et al. “Joint Segmentation of Image Ensembles via Latent Atlases.” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. Ed. Guang-Zhong Yang et al. LNCS Vol. 5761. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 272–280. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Raviv, Tammy Riklin | |
dc.contributor.mitauthor | Van Leemput, Koen | |
dc.contributor.mitauthor | Wells, William M. | |
dc.contributor.mitauthor | Golland, Polina | |
dc.relation.journal | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Riklin Raviv, Tammy; Leemput, Koen; Wells, William M.; Golland, Polina | en |
dc.identifier.orcid | https://orcid.org/0000-0003-2516-731X | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |