Show simple item record

dc.contributor.authorRaviv, Tammy Riklin
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorWells, William M.
dc.contributor.authorGolland, Polina
dc.date.accessioned2012-10-15T13:57:44Z
dc.date.available2012-10-15T13:57:44Z
dc.date.issued2009-10
dc.date.submitted2009-09
dc.identifier.isbn978-3-642-04267-6
dc.identifier.urihttp://hdl.handle.net/1721.1/73950
dc.description12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part Ien_US
dc.description.abstractSpatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a joint segmentation of corresponding, aligned structures in the entire population that does not require a probability atlas. Instead, a latent atlas, initialized by a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The proposed method is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method by segmenting 50 brain MR volumes. Segmentation accuracy for cortical and subcortical structures approaches the quality of state-of-the-art atlas-based segmentation results, suggesting that the latent atlas method is a reasonable alternative when existing atlases are not compatible with the data to be processed.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NCRR NAC P41-RR13218)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NINDS R01-NS051826)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NCRR mBIRN U24-RR021382)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0642971)en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-04268-3_34en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleJoint Segmentation of Image Ensembles via Latent Atlasesen_US
dc.typeArticleen_US
dc.identifier.citationRiklin Raviv, Tammy et al. “Joint Segmentation of Image Ensembles via Latent Atlases.” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. Ed. Guang-Zhong Yang et al. LNCS Vol. 5761. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 272–280.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorRaviv, Tammy Riklin
dc.contributor.mitauthorVan Leemput, Koen
dc.contributor.mitauthorWells, William M.
dc.contributor.mitauthorGolland, Polina
dc.relation.journalMedical Image Computing and Computer-Assisted Intervention – MICCAI 2009en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRiklin Raviv, Tammy; Leemput, Koen; Wells, William M.; Golland, Polinaen
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record