Show simple item record

dc.contributor.authorLashkari, Danial
dc.contributor.authorGolland, Polina
dc.date.accessioned2012-10-15T14:05:53Z
dc.date.available2012-10-15T14:05:53Z
dc.date.issued2009-07
dc.date.submitted2009-07
dc.identifier.isbn978-3-642-02497-9
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/73952
dc.descriptionAuthor Manuscript received 2010 March 11. 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. Proceedingsen_US
dc.description.abstractWe present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both inter-subject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the data. The resulting algorithm finds a functional parcellation of the individual brains along with a set of population-level clusters, establishing correspondence between these two levels. The model eliminates the need for spatial normalization while still enabling us to fuse data from several subjects. We demonstrate the application of our method on a visual fMRI study.en_US
dc.description.sponsorshipMcGovern Institute for Brain Research at MIT. Neurotechnology Programen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0642971)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NCRR NAC P41-RR13218)en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-02498-6_33en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleExploratory fMRI analysis without spatial normalizationen_US
dc.typeArticleen_US
dc.identifier.citationLashkari, Danial, and Polina Golland. “Exploratory fMRI Analysis Without Spatial Normalization.” Information Processing in Medical Imaging. Ed. Jerry L. Prince, Dzung L. Pham, & Kyle J. Myers. LNCS Vol. 5636. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 398–410.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLashkari, Danial
dc.contributor.mitauthorGolland, Polina
dc.relation.journalInformation Processing in Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLashkari, Danial; Golland, Polinaen
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record