Show simple item record

dc.contributor.authorAloupis, Greg
dc.contributor.authorBose, Prosenjit
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorLangerman, Stefan
dc.contributor.authorMeijer, Henk
dc.contributor.authorOvermars, Mark
dc.contributor.authorToussaint, Godfried T.
dc.date.accessioned2012-10-15T16:31:23Z
dc.date.available2012-10-15T16:31:23Z
dc.date.issued2011
dc.date.submitted2010-01
dc.identifier.issn0218-1959
dc.identifier.urihttp://hdl.handle.net/1721.1/73973
dc.description.abstractGiven a planar polygon (or chain) with a list of edges {e[subscript 1], e[subscript 2], e[subscript 3], …, e[subscript n-1], e[subscript n]}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a special case and involve interchanging two consecutive edges. When each edge of the given polygon has also been assigned a direction we say that the polygon is signed. In this case any edge involved in a reversal changes direction. We show that a star-shaped polygon can be convexified using O(n[superscript 2]) edge-swaps, while maintaining simplicity, and that this is tight in the worst case. We show that determining whether a signed polygon P can be transformed to one that has rotational or mirror symmetry with P, using transpositions, takes Θ(n log n) time. We prove that the problem of deciding whether transpositions can modify a polygon to fit inside a rectangle is weakly NP-complete. Finally we give an O(n log n) time algorithm to compute the maximum endpoint distance for an oriented chain.en_US
dc.language.isoen_US
dc.publisherWorld Scientificen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/s0218195911003561en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceOther University Web Domainen_US
dc.titleComputing Signed Permutations of Polygonen_US
dc.typeArticleen_US
dc.identifier.citationAloupis, Greg et al. “Computing Signed Permutations of Polygon.” International Journal of Computational Geometry & Applications 21.01 (2011): 87–100.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDemaine, Erik D.
dc.relation.journalInternational Journal of Computational Geometry & Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsALOUPIS, GREG; BOSE, PROSENJIT; DEMAINE, ERIK D.; LANGERMAN, STEFAN; MEIJER, HENK; OVERMARS, MARK; TOUSSAINT, GODFRIED T.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record