MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cis-trans isomerization in the S[subscript 1] state of acetylene: Identification of cis-well vibrational levels

Author(s)
Merer, Anthony J.; Steeves, Adam H.; Baraban, Joshua H.; Bechtel, Hans A.; Field, Robert W.
Thumbnail
Downloadrwf348.pdf (944.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A systematic analysis of the S[subscript 1]-trans ([bar-over A][superscript 1]A[subscript u]) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm[superscript –1]. Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46 175 cm[superscript –1]. Its [superscript 13]C isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S[subscript 1-]cis isomer ([bar-over A][superscript 1]A[subscript 2]). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)]10.1063/1.3570823 of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the [superscript 13]C isotope shift of the 46 175 cm[superscript −1] level (assigned here as cis-3[superscript 1]6[superscript 1]). The S[subscript 1]-cis zero-point level is deduced to lie near 44 900 cm[superscript −1], and the ν[subscript 6] vibrational frequency of the S[subscript 1]-cis well is found to be roughly 565 cm[superscript −1]; these values are in remarkably good agreement with the results of recent ab initio calculations. The 46 175 cm[superscript −1] vibrational level is found to have a 3.9 cm[superscript −1] staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/73983
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Chemical Physics
Publisher
American Institute of Physics (AIP)
Citation
Merer, Anthony J. et al. “Cis-trans Isomerization in the S1 State of Acetylene: Identification of Cis-well Vibrational Levels.” The Journal of Chemical Physics 134.24 (2011): 244310. © 2011 American Institute of Physics
Version: Final published version
ISSN
0021-9606
1089-7690

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.