MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular Insight Into the Energy Levels at the Organic Donor/Acceptor Interface: A QM/MM Study

Author(s)
Yost, Shane Robert; Wang, Lee-Ping; Van Voorhis, Troy
Thumbnail
DownloadInterface.pdf (8.244Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present an investigation of the band levels and charge transfer (CT) states at the interface between two organic semiconductors, metal-free phthalocyanine (H2Pc) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), using a combined quantum mechanics/molecular mechanics (QM/MM) technique. Near the organic–organic interface, significant changes from the bulk, as large as 0.2 eV, are found in the excited state energies, ionization potentials, and electron affinities, due to differences in molecular packing and polarizabilities of the two molecules. The changes in the ionization potential and electron affinity cause the CT states at the interface to be on average higher in energy than fully separated charges in the bulk materials despite having a typical local binding energy of 0.15 eV. Furthermore, we find that thermal fluctuations can induce variations of up to 0.1 eV in the CT binding energy. These results suggest that it is possible for bound interfacial CT states to dissociate in a barrierless fashion without involving “hot” CT states. This observation has direct relevance to the design of more efficient organic photovoltaics.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/73997
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Physical Chemistry C
Publisher
American Chemical Society
Citation
Yost, Shane R., Lee-Ping Wang, and Troy Van Voorhis. “Molecular Insight Into the Energy Levels at the Organic Donor/Acceptor Interface: A Quantum Mechanics/Molecular Mechanics Study.” The Journal of Physical Chemistry C 115.29 (2011): 14431–14436. Web.
Version: Author's final manuscript
ISSN
1932-7447
1932-7455

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.