Show simple item record

dc.contributor.authorSabuncu, Mert R.
dc.contributor.authorYeo, B. T. Thomas
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorFischl, Bruce
dc.contributor.authorGolland, Polina
dc.date.accessioned2012-10-16T13:41:07Z
dc.date.available2012-10-16T13:41:07Z
dc.date.issued2009-09
dc.identifier.otherPMC2930597
dc.identifier.urihttp://hdl.handle.net/1721.1/74007
dc.description.abstractWe present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (NIH NIBIB NAMIC U54-EB005149)en_US
dc.description.sponsorshipNIH NCRR NAC P41-RR13218en_US
dc.description.sponsorshipNIH NCRR mBIRN U24-RR021382en_US
dc.description.sponsorshipNIH NINDS R01-NS051826en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER grant 0642971)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (P41-RR14075)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (R01 RR16594-01A1)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)en_US
dc.description.sponsorshipNational Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930597/pdf/nihms-179665.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Golland via Amy Stouten_US
dc.titleNonparametric mixture models for supervised image parcellationen_US
dc.typeArticleen_US
dc.identifier.citationMR Sabuncu, BTT Yeo, K Van Leemput, B Fischl, P Golland. Nonparametric Mixture Models for Supervised Image Parcellation. Proceedings of the Medical Image Computing and Computer Assisted Intervention (MICCAI) workshop on Probabilistic Models for Medical Image Analysis (PMMIA), pages 301-313, 2009.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorSabuncu, Mert R.
dc.contributor.mitauthorYeo, B. T. Thomas
dc.contributor.mitauthorVan Leemput, Koen
dc.contributor.mitauthorFischl, Bruce
dc.contributor.mitauthorGolland, Polina
dc.relation.journalProceedings of the Medical Image Computing and Computer Assisted Intervention (MICCAI)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsSabuncu, Mert R.; Yeo, B. T. Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polinaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5002-1227
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record