MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cases where finding the minimum entropy coloring of a characteristic graph is a polynomial time problem

Author(s)
Feizi-Khankandi, Soheil; Medard, Muriel
Thumbnail
DownloadMedard_Cases where.pdf (135.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we consider the problem of finding the minimum entropy coloring of a characteristic graph under some conditions which allow it to be in polynomial time. This problem arises in the functional compression problem where the computation of a function of sources is desired at the receiver. The rate region of the functional compression problem has been considered in some references under some assumptions. Recently, Feizi et al. computed this rate region for a general one-stage tree network and its extension to a general tree network. In their proposed coding scheme, one needs to compute the minimum entropy coloring (a coloring random variable which minimizes the entropy) of a characteristic graph. In general, finding this coloring is an NP-hard problem (as shown by Cardinal et al.). However, in this paper, we show that depending on the characteristic graph's structure, there are some interesting cases where finding the minimum entropy coloring is not NP-hard, but tractable and practical. In one of these cases, we show that, having a non-zero joint probability condition on RVs' distributions, for any desired function f, makes characteristic graphs to be formed of some non-overlapping fully-connected maximal independent sets. Therefore, the minimum entropy coloring can be solved in polynomial time. In another case, we show that if f is a quantization function, this problem is also tractable.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/74017
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2010
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Feizi, Soheil, and Muriel Medard. “Cases Where Finding the Minimum Entropy Coloring of a Characteristic Graph Is a Polynomial Time Problem.” IEEE, 2010. 116–120. © Copyright 2010 IEEE
Version: Final published version
ISBN
978-1-4244-7891-0
978-1-4244-7890-3

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.