MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equilibrium Form of Horizontally Retreating, Soil-Mantled Hillslopes: Model Development and Application to a Groundwater Sapping Landscape

Author(s)
Perron, J. Taylor; Hamon, Jennifer L.
Thumbnail
DownloadPerron_Equilibrium form.pdf (2.596Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present analytical solutions for the steady state topographic profile of a soil-mantled hillslope retreating into a level plain in response to a horizontally migrating base level. This model applies to several scenarios that commonly arise in landscapes, including widening valleys, eroding channel banks, and retreating scarps. For a sediment transport law in which sediment flux is linearly proportional to the topographic slope, the steady state profile is exponential, with an e-folding length, L, proportional to the ratio of the sediment transport coefficient to the base level migration speed. For the case in which sediment flux increases nonlinearly with slope, the solution has a similar form that converges to the linear case as L increases. We use a numerical model to explore the effects of different base level geometries and find that the one-dimensional analytical solution is a close approximation for the hillslope profile above an advancing channel tip. We then compare the analytical model with hillslope profiles above the tips of a groundwater sapping channel network in the Florida Panhandle. The model agrees closely with hillslope profiles measured from airborne laser altimetry, and we use a predicted log linear relationship between topographic slope and horizontal distance to estimate L for the measured profiles. Mapping 1/L over channel tips throughout the landscape reveals that adjacent channel networks may be growing at different rates and that south facing slopes experience more efficient hillslope transport.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/74033
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research
Publisher
American Geophysical Union (AGU)
Citation
Perron, J. Taylor, and Jennifer L. Hamon. “Equilibrium Form of Horizontally Retreating, Soil-mantled Hillslopes: Model Development and Application to a Groundwater Sapping Landscape.” Journal of Geophysical Research 117.F1 (2012). ©2012. American Geophysical Union
Version: Final published version
ISSN
0148-0227
2156–2202

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.