Common structure in the heterogeneity of plant-matter decay
Author(s)
Forney, David C.; Rothman, Daniel H.
DownloadRothman_Common structure.pdf (601.5Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Carbon removed from the atmosphere by photosynthesis is released back by respiration. Although some organic carbon is degraded quickly, older carbon persists; consequently carbon stocks are much larger than predicted by initial decomposition rates. This disparity can be traced to a wide range of first-order decay-rate constants, but the rate distributions and the mechanisms that determine them are unknown. Here, we pose and solve an inverse problem to find the rate distributions corresponding to the decomposition of plant matter throughout North America. We find that rate distributions are lognormal, with a mean and variance that depend on climatic conditions and substrate. Changes in temperature and precipitation scale all rates similarly, whereas the initial substrate composition sets the time scale of faster rates. These findings probably result from the interplay of stochastic processes and biochemical kinetics, suggesting that the intrinsic variability of decomposers, substrate and environment results in a predictable distribution of rates. Within this framework, turnover times increase exponentially with the kinetic heterogeneity of rates, thereby providing a theoretical expression for the persistence of recalcitrant organic carbon in the natural environment.
Date issued
2012-04Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Journal of the Royal Society Interface
Publisher
Royal Society
Citation
Forney, D. C., and D. H. Rothman. “Common Structure in the Heterogeneity of Plant-matter Decay.” Journal of The Royal Society Interface 9.74 (2012): 2255–2267. © 2012 The Royal Society
Version: Author's final manuscript
ISSN
1742-5689
1742-5662