MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Correlation length and unusual corrections to entanglement entropy

Author(s)
Ercolessi, Elisa; Evangelisti, Stefano; Franchini, Fabio; Ravanini, Francesco
Thumbnail
DownloadErcolessi-2012-Correlation length and unusual corrections to entanglement entropy.pdf (607.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study analytically the corrections to the leading terms in the Rényi entropy of a massive lattice theory, showing significant deviations from naive expectations. In particular, we show that finite size and finite mass effects give rise to different contributions (with different exponents) and thus violate a simple scaling argument. In the specific, we look at the entanglement entropy of a bipartite XYZ spin-1/2 chain in its ground state. When the system is divided into two semi-infinite half-chains, we have an analytical expression of the Rényi entropy as a function of a single mass parameter. In the scaling limit, we show that the entropy as a function of the correlation length formally coincides with that of a bulk Ising model. This should be compared with the fact that, at criticality, the model is described by a c=1 conformal field theory and the corrections to the entropy due to finite size effects show exponents depending on the compactification radius of the theory. We will argue that there is no contradiction between these statements. If the lattice spacing is retained finite, the relation between the mass parameter and the correlation length generates new subleading terms in the entropy, whose form is path dependent in phase space and whose interpretation within a field theory is not available yet. These contributions arise as a consequence of the existence of stable bound states and are thus a distinctive feature of truly interacting theories, such as the XYZ chain.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/74080
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Ercolessi, Elisa et al. “Correlation length and unusual corrections to entanglement entropy.” Physical Review B 85.11 (2012). ©2012 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.