dc.contributor.author | Venkataraman, Archana | |
dc.contributor.author | Rathi, Yogesh | |
dc.contributor.author | Kubicki, Marek | |
dc.contributor.author | Westin, Carl-Fredrik | |
dc.contributor.author | Golland, Polina | |
dc.date.accessioned | 2012-10-18T16:56:09Z | |
dc.date.available | 2012-10-18T16:56:09Z | |
dc.date.issued | 2010-09 | |
dc.identifier.isbn | 978-3-642-15704-2 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/74083 | |
dc.description | Author Manuscript 2011 March 12. 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part I | en_US |
dc.description.abstract | We propose a novel probabilistic framework to merge information from DWI tractography and resting-state fMRI correlations. In particular, we model the interaction of latent anatomical and functional connectivity templates between brain regions and present an intuitive extension to population studies. We employ a mean-field approximation to fit the new model to the data. The resulting algorithm identifies differences in latent connectivity between the groups. We demonstrate our method on a study of normal controls and schizophrenia patients. | en_US |
dc.description.sponsorship | National Alliance for Medical Image Computing (U.S.) (NIH NIBIBNAMICU54-EB005149) | en_US |
dc.description.sponsorship | Neuroimaging Analysis Center (U.S.) (NIH NCRR NAC P41-RR13218) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant R01MH074794) | en_US |
dc.description.sponsorship | National Defense Science and Engineering Graduate Fellowship | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Grant 0642971) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer Berlin / Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-15705-9_24 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | PubMed Central | en_US |
dc.title | Joint generative model for fMRI/DWI and its application to population | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hutchison, David et al. “Joint Generative Model for fMRI/DWI and Its Application to Population Studies.” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Ed. Tianzi Jiang et al. LNCS Vol. 6361. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 191–199. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Venkataraman, Archana | |
dc.contributor.mitauthor | Westin, Carl-Fredrik | |
dc.contributor.mitauthor | Golland, Polina | |
dc.relation.journal | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Venkataraman, Archana; Rathi, Yogesh; Kubicki, Marek; Westin, Carl-Fredrik; Golland, Polina | en |
dc.identifier.orcid | https://orcid.org/0000-0003-2516-731X | |
dc.identifier.orcid | https://orcid.org/0000-0002-2683-5888 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |