MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response

Author(s)
Leibensperger, Eric Michael; Mickley, L. J.; Chen, W. -T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.; ... Show more Show less
Thumbnail
Download2-Leibensperger-2012-Climatic effects of.pdf (1.310Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period.
Date issued
2012-04
URI
http://hdl.handle.net/1721.1/74090
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Atmospheric Chemistry and Physics Discussions
Publisher
Copernicus GmbH
Citation
Leibensperger, E. M. et al. “Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols -Part 2: Climate Response.” Atmospheric Chemistry and Physics 12.7 (2012): 3349–3362.
Version: Final published version
ISSN
1680-7375
1680-7367

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.