Show simple item record

dc.contributor.authorPacula, Maciej
dc.contributor.authorAnsel, Jason Andrew
dc.contributor.authorAmarasinghe, Saman P.
dc.contributor.authorO'Reilly, Una-May
dc.date.accessioned2012-10-18T18:36:58Z
dc.date.available2012-10-18T18:36:58Z
dc.date.issued2012-03
dc.date.submitted2012-04
dc.identifier.isbn978-3-642-29177-7
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/74098
dc.descriptionEvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, Málaga, Spain, April 11-13, 2012, Proceedingsen_US
dc.description.abstractWe are using bandit-based adaptive operator selection while autotuning parallel computer programs. The autotuning, which uses evolutionary algorithm-based stochastic sampling, takes place over an extended duration and occurs in situ as programs execute. The environment or context during tuning is either largely static in one scenario or dynamic in another. We rely upon adaptive operator selection to dynamically generate worthy test configurations of the program. In this paper, we study how the choice of hyperparameters, which control the trade-off between exploration and exploitation, affects the effectiveness of adaptive operator selection which in turn affects the performance of the autotuner. We show that while the optimal assignment of hyperparameters varies greatly between different benchmarks, there exists a single assignment, for a context, of hyperparameters that performs well regardless of the program being tuned.en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-29178-4_8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleHyperparameter Tuning in Bandit-Based Adaptive Operator Selectionen_US
dc.typeArticleen_US
dc.identifier.citationPacula, Maciej et al. “Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection.” Applications of Evolutionary Computation. Ed. Cecilia Chio et al. LNCS Vol. 7248. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. 73–82.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorPacula, Maciej
dc.contributor.mitauthorAnsel, Jason Andrew
dc.contributor.mitauthorAmarasinghe, Saman P.
dc.contributor.mitauthorO'Reilly, Una-May
dc.relation.journalApplications of Evolutionary Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsPacula, Maciej; Ansel, Jason; Amarasinghe, Saman; O’Reilly, Una-Mayen
dc.identifier.orcidhttps://orcid.org/0000-0002-7231-7643
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record