Formation and Structure of Low-Density Exo-Neptunes
Author(s)
Bodenheimer, Peter; Lissauer, Jack J.; Seager, Sara; Rogers, Leslie Anne
DownloadSeager_Formation and structure.pdf (770.9Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Kepler has found hundreds of Neptune-size (2-6 R [subscript ⊕]) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. Using theoretical models of planet formation, evolution, and structure, we explore the range of minimum plausible masses for low-density exo-Neptunes. We focus on highly irradiated planets with T [subscript eq] ≥ 500 K. We consider two separate formation pathways for low-mass planets with voluminous atmospheres of light gases: core-nucleated accretion and outgassing of hydrogen from dissociated ices. We show that Neptune-size planets at T [subscript eq] = 500 K with masses as small as a few times that of Earth can plausibly be formed by core-nucleated accretion coupled with subsequent inward migration. We also derive a limiting low-density mass-radius relation for rocky planets with outgassed hydrogen envelopes but no surface water. Rocky planets with outgassed hydrogen envelopes typically have computed radii well below 3 R [subscript ⊕]. For both planets with H/He envelopes from core-nucleated accretion and planets with outgassed hydrogen envelopes, we employ planet interior models to map the range of planet mass-envelope mass-equilibrium temperature parameter space that is consistent with Neptune-size planet radii. Atmospheric mass loss mediates which corners of this parameter space are populated by actual planets and ultimately governs the minimum plausible mass at a specified transit radius. We find that Kepler's 2-6 R [subscript ⊕] planet candidates at T [subscript eq] = 500-1000 K could potentially have masses lsim 4 M [subscript ⊕]. Although our quantitative results depend on several assumptions, our qualitative finding that warm Neptune-size planets can have masses substantially smaller than those given by interpolating the masses and radii of planets within our Solar System is robust.
Date issued
2011-08Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of PhysicsJournal
Astrophysical Journal
Publisher
IOP Publishing
Citation
Rogers, Leslie A. et al. “Formation and Structure of Low-Density Exo-Neptunes.” The Astrophysical Journal 738.1 (2011): 59. © 2011 IOP Publishing
Version: Final published version
ISSN
0004-637X
1538-4357