MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lightning remagnetization of the Vredefort impact crater: No evidence for impact-generated magnetic fields

Author(s)
Carporzen, Laurent; Weiss, Benjamin P.; Gilder, Stuart A.; Pommier, Anne; Hart, Rodger J.
Thumbnail
DownloadWiess_Lightning remagnetization.pdf (2.603Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The Vredefort impact crater in South Africa is one of the oldest and largest craters on Earth, making it a unique analog for planetary basins. Intense and randomly oriented remanent magnetization observed in surface samples at Vredefort has been attributed to impact-generated magnetic fields. This possibility has major implications for extraterrestrial paleomagnetism since impact-generated fields have been proposed as a key alternative to the dynamo hypothesis for magnetization on the Moon and asteroids. Furthermore, the presence of single-domain magnetite found along shock-generated planar deformation features in Vredefort granites has been widely attributed to the 2.02 Ga impact event. An alternative hypothesis is that the unusual magnetization and/or rock magnetic properties of Vredefort rocks are the products of recent lightning strikes. Lightning and impact-generated fields can be distinguished by measuring samples collected from below the present surface. Here we present a paleomagnetic and rock magnetic study of samples from two 10 m deep vertical boreholes. We show that the magnetization at depth is consistent with a thermoremanent magnetization acquired in the local geomagnetic field following the impact, while random, intense magnetization and some of the unusual rock magnetic properties observed in surface rocks are superficial phenomena produced by lightning. Because Vredefort is the only terrestrial crater that has been proposed to contain records of impact-generated fields, this removes a key piece of evidence in support of the hypothesis that paleomagnetism of the Moon and other extraterrestrial bodies is the product of impacts rather than past core dynamos.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/74217
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research Planets
Publisher
American Geophysical Union (AGU)
Citation
Carporzen, Laurent et al. “Lightning Remagnetization of the Vredefort Impact Crater: No Evidence for Impact-generated Magnetic Fields.” Journal of Geophysical Research 117.E1 (2012). ©2012 American Geophysical Union
Version: Final published version
ISSN
0148-0227

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.