MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The transcription elongation factor NusA is required for stressinduced mutagenesis in Escherichia coli

Author(s)
Cohen, Susan E.; Walker, Graham C.
Thumbnail
DownloadWalker_The transcription.pdf (517.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac+ revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac+ revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/74677
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Biology
Publisher
Elsevier Ltd.
Citation
Cohen, Susan E., and Graham C. Walker. “The Transcription Elongation Factor NusA Is Required for Stress-Induced Mutagenesis in Escherichia Coli.” Current Biology 20.1 (2010): 80–85.
Version: Author's final manuscript
ISSN
0960-9822
1879-0445

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.