MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series

Author(s)
Lee, Joon; Nemati, Shamim; Silva, Ikaro; Edwards, Bradley A.; Butler, James P.; Malhotra, Atul; ... Show more Show less
Thumbnail
DownloadLee-2012-Transfer Entropy Est.pdf (524.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0
Metadata
Show full item record
Abstract
Background: The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers. Methods: With respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE), and the Darbellay-Vajda (D-V) adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratoryrelated chemosensitivity to O[subscript 2] and CO[subscript 2] induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO[subscript 2] and PCO[subscript 2] on minute ventilation ([dot over V][subscript E]) before and after administration of domperidone was analyzed. Results: In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2 → [dot over V][subscript E]. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO[subscript 2] → [dot over V][subscript E], in agreement with experimental findings. Conclusions: Transfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results of this study suggest that fixed-binning, even with ranking, is too primitive, and although there is no clear winner between KDE and D-V partitioning, the reader should note that KDE requires more computational time and extensive parameter selection than D-V partitioning. We hope this study provides a guideline for selection of an appropriate transfer entropy estimation method.
Date issued
2012-04
URI
http://hdl.handle.net/1721.1/75000
Department
Institute for Medical Engineering and Science; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
BioMedical Engineering OnLine
Publisher
Biomed Central Ltd.
Citation
Lee, Joon et al. “Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series.” BioMedical Engineering OnLine 11.1 (2012): 19. © 2012 BioMed Central Ltd
Version: Final published version
ISSN
1475-925X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.