Show simple item record

dc.contributor.authorZuber, Maria
dc.contributor.authorWatters, Wesley A.
dc.contributor.authorHager, Bradford H
dc.date.accessioned2012-11-26T20:39:01Z
dc.date.available2012-11-26T20:39:01Z
dc.date.issued2009-02
dc.date.submitted2007-07
dc.identifier.issn0148-0227
dc.identifier.urihttp://hdl.handle.net/1721.1/75031
dc.description.abstractWe examine the effects of thermal perturbations on a convecting layer of incompressible fluid with uniform viscosity in the limit of infinite Prandtl number, for two upper boundary conditions (free- and no-slip) and heat sources (100% volumetric heating and 100% bottom heating) in 2-D Cartesian finite element simulations. Small, low-temperature perturbations are swept into nearby downflows and have almost no effect on the ambient flow field. Large, high-temperature perturbations are rapidly buoyed and flattened, and spread along the layer's upper boundary as a viscous gravity current. The spreading flow severs and displaces downwellings in its path, and also thins and stabilizes the upper thermal boundary layer (TBL), preventing new instabilities from growing until the spreading motion stops. A return flow driven by the spreading current displaces the roots of plumes toward the center of the spreading region and inhibits nascent plumes in the basal TBL. When spreading halts, the flow field is reorganized as convection reinitiates. We obtain an expression for the spreading time scale, t [subscript s] , in terms of the Rayleigh number and a dimensionless perturbation temperature (Θ), as well as a size (Λ), and a condition that indicates when convection is slowed at a system-wide scale. We also describe a method for calculating the heat deposited by shock waves at the increased temperatures and pressures of terrestrial mantles, and supply estimates for projectile radii in the range 200 to 900 km and vertical incident velocities in the range 7 to 20 km s[superscript −1]. We also consider potential applications of this work for understanding the history of early Mars.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration. Planetary Geology and Geophysics Programen_US
dc.language.isoen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/ 10.1029/2007je002964en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleThermal perturbations caused by large impacts and consequences for mantle convectionen_US
dc.typeArticleen_US
dc.identifier.citationWatters, W. A., M. T. Zuber, and B. H. Hager. “Thermal Perturbations Caused by Large Impacts and Consequences for Mantle Convection.” Journal of Geophysical Research 114.E2 (2009). ©2012 American Geophysical Unionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorWatters, W. A.
dc.contributor.mitauthorZuber, Maria
dc.contributor.mitauthorHager, Bradford H.
dc.relation.journalJournal of Geophysical Research Planetsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWatters, W. A.; Zuber, M. T.; Hager, B. H.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2652-8017
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record