MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuronal Learning of Invariant Object Representation in the Ventral Visual Stream Is Not Dependent on Reward

Author(s)
Li, Nuo; DiCarlo, James
Thumbnail
DownloadLi-2012-Neuronal Learning of.pdf (1.678Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Neurons at the top of primate ventral visual stream [inferior temporal cortex (IT)] have selectivity for objects that is highly tolerant to variation in the object's appearance on the retina. Previous nonhuman primate (Macaca mulatta) studies suggest that this neuronal tolerance is at least partly supported by the natural temporal contiguity of visual experience, because altering that temporal contiguity can robustly alter adult IT position and size tolerance. According to that work, it is the statistics of the subject's visual experience, not the subject's reward, that instruct the specific images that IT treats as equivalent. But is reward necessary for gating this type of learning in the ventral stream? Here we show that this is not the case—temporal tolerance learning proceeds at the same rate, regardless of reward magnitude and regardless of the temporal co-occurrence of reward, even in a behavioral task that does not require the subject to engage the object images. This suggests that the ventral visual stream uses autonomous, fully unsupervised mechanisms to constantly leverage all visual experience to help build its invariant object representation.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/75402
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; McGovern Institute for Brain Research at MIT
Journal
Journal of Neuroscience
Publisher
Society for Neuroscience
Citation
Li, N., and J. J. DiCarlo. “Neuronal Learning of Invariant Object Representation in the Ventral Visual Stream Is Not Dependent on Reward.” Journal of Neuroscience 32.19 (2012): 6611–6620.
Version: Final published version
ISSN
0270-6474
1529-2401

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.