Show simple item record

dc.contributor.authorArtzi, Natalie
dc.contributor.authorOliva, Nuria
dc.contributor.authorPuron, Cristina
dc.contributor.authorShitreet, Sagi
dc.contributor.authorbon Ramos, Adriana
dc.contributor.authorArtzi, Shay
dc.contributor.authorGroothuis, Adam R.
dc.contributor.authorSahagian, Gary
dc.contributor.authorEdelman, Elazer R
dc.date.accessioned2012-12-12T15:35:54Z
dc.date.available2012-12-12T15:35:54Z
dc.date.issued2011-08
dc.date.submitted2011-03
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/75406
dc.descriptionAuthor Manuscript 2012 March 1.en_US
dc.description.abstractThe design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion[superscript 1, 2] , and standard methods sacrifice samples or animals[superscript 3], preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (GM/HL 49039)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (UL1 RR 025758)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat3095en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.rights.urien_US
dc.sourcePMCen_US
dc.titleIn vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imagingen_US
dc.typeArticleen_US
dc.identifier.citationArtzi, Natalie et al. “In Vivo and in Vitro Tracking of Erosion in Biodegradable Materials Using Non-invasive Fluorescence Imaging.” Nature Materials 10.9 (2011): 704–709.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorArtzi, Natalie
dc.contributor.mitauthorOliva, Nuria
dc.contributor.mitauthorPuron, Cristina
dc.contributor.mitauthorShitreet, Sagi
dc.contributor.mitauthorbon Ramos, Adriana
dc.contributor.mitauthorEdelman, Elazer R.
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsArtzi, Natalie; Oliva, Nuria; Puron, Cristina; Shitreet, Sagi; Artzi, Shay; bon Ramos, Adriana; Groothuis, Adam; Sahagian, Gary; Edelman, Elazer R.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3055-797X
dc.identifier.orcidhttps://orcid.org/0000-0002-7832-7156
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record