MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Despite its role in assembly, methionine 35 is not necessary for amyloid β-protein toxicity

Author(s)
Maiti, Panchanan; Lomakin, Aleksey; Benedek, George B.; Bitan, Gal
Thumbnail
DownloadBenedek_Despite its.pdf (2.893Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
An important component of the pathologic process underlying Alzheimer’s disease is oxidative stress. Met[superscript 35] in amyloid β-protein (Aβ) is prone to participating in redox reactions promoting oxidative stress, and therefore is believed to contribute significantly Aβ-induced toxicity. Thus, substitution of Met[superscript 35] by residues that do not participate in redox chemistry would be expected to decrease Aβ toxicity. Indeed, substitution of Met[superscript 35] by norleucine (Nle) was reported to reduce Aβ toxicity. Surprisingly, however, substitution of Met[superscript 35] by Val was reported to increase toxicity. Aβ toxicity is known to be strongly related to its self-assembly. However, neither substitution is predicted to affect Aβ assembly substantially. Thus, the effect of these substitutions on toxicity is difficult to explain. We revisited this issue and compared Aβ40 and Aβ42 with analogs containing Met[superscript 35]→Nle or Met[superscript 35]→Val substitutions using multiple biophysical and toxicity assays. We found that substitution of Met[superscript 35] by Nle or Val had moderate effects on Aβ assembly. Surprisingly, despite these effects, neither substitution changed Aβ neurotoxicity significantly in three different assays. These results suggest that the presence of Met[superscript 35] in Aβ is not important for Aβ toxicity, challenging to the prevailing paradigm, which suggests that redox reactions involving Met35 contribute substantially to Aβ-induced toxicity.
Description
Author Manuscript 2011 June 1.
Date issued
2010-06
URI
http://hdl.handle.net/1721.1/75410
Department
Massachusetts Institute of Technology. Materials Processing Center; Massachusetts Institute of Technology. Department of Physics
Journal
Journal of Neurochemistry
Publisher
Wiley Blackwell
Citation
Maiti, Panchanan et al. “Despite Its Role in Assembly, Methionine 35 Is Not Necessary for Amyloid Β-protein Toxicity.” Journal of Neurochemistry (2010).
Version: Author's final manuscript
ISSN
0022-3042
1471-4159

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.