Show simple item record

dc.contributor.authorHashimoto, Tatsunori Benjamin
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorSherwood, Richard
dc.contributor.authorMazzoni, Esteban O.
dc.contributor.authorWichterle, Hynek
dc.contributor.authorGifford, David K.
dc.date.accessioned2012-12-12T16:46:14Z
dc.date.available2012-12-12T16:46:14Z
dc.date.issued2012-01
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.urihttp://hdl.handle.net/1721.1/75412
dc.description.abstractWe present a method, LineageProgram, that uses the developmental lineage relationship of observed gene expression measurements to improve the learning of developmentally relevant cellular states and expression programs. We find that incorporating lineage information allows us to significantly improve both the predictive power and interpretability of expression programs that are derived from expression measurements from in vitro differentiation experiments. The lineage tree of a differentiation experiment is a tree graph whose nodes describe all of the unique expression states in the input expression measurements, and edges describe the experimental perturbations applied to cells. Our method, LineageProgram, is based on a log-linear model with parameters that reflect changes along the lineage tree. Regularization with L1 that based methods controls the parameters in three distinct ways: the number of genes change between two cellular states, the number of unique cellular states, and the number of underlying factors responsible for changes in cell state. The model is estimated with proximal operators to quickly discover a small number of key cell states and gene sets. Comparisons with existing factorization, techniques, such as singular value decomposition and non-negative matrix factorization show that our method provides higher predictive power in held, out tests while inducing sparse and biologically relevant gene sets.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P01-NS055923)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1-UL1-RR024920)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/bts204en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceOxforden_US
dc.titleLineage-based identification of cellular states and expression programsen_US
dc.typeArticleen_US
dc.identifier.citationHashimoto, T. et al. “Lineage-based Identification of Cellular States and Expression Programs.” Bioinformatics 28.12 (2012): i250–i257.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorHashimoto, Tatsunori Benjamin
dc.contributor.mitauthorJaakkola, Tommi S.
dc.contributor.mitauthorGifford, David K.
dc.relation.journalBioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHashimoto, T.; Jaakkola, T.; Sherwood, R.; Mazzoni, E. O.; Wichterle, H.; Gifford, D.en
dc.identifier.orcidhttps://orcid.org/0000-0003-0521-5855
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0003-1709-4034
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record