MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stripe melting and quantum criticality in correlated metals

Author(s)
Mross, David Fabian; Todadri, Senthil
Thumbnail
DownloadMross-2012-Stripe melting and quantum criticality in correlated metals.pdf (1.285Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study theoretically quantum melting transitions of stripe order in a metallic environment, and the associated reconstruction of the electronic Fermi surface. We show that such quantum phase transitions can be continuous in situations where the stripe melting occurs by proliferating pairs of dislocations in the stripe order parameter without proliferating single dislocations. We develop an intuitive picture of such phases as “stripe loop metals” where the fluctuating stripes form closed loops of arbitrary size at long distances. We obtain a controlled critical theory of a few different continuous quantum melting transitions of stripes in metals. At such a (deconfined) critical point, the fluctuations of the stripe order parameter are strongly coupled, yet tractable. They also decouple dynamically from the Fermi surface. We calculate many universal properties of these quantum critical points. In particular, we find that the full Fermi surface and the associated Landau quasiparticles remain sharply defined at the critical point. We discuss the phenomenon of Fermi surface reconstruction across this transition and the effect of quantum critical stripe fluctuations on the superconducting instability. We study possible relevance of our results to several phenomena in the cuprates.
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/75442
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Mross, David, and T. Senthil. “Stripe Melting and Quantum Criticality in Correlated Metals.” Physical Review B 86.11 (2012). ©2012 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.