MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bringing physics to life at the submesoscale

Author(s)
Ferrari, Raffaele; Franks, Peter J. S.; Martin, Adrian P.; Rivière, Pascal
Thumbnail
Downloadraf paper 2.pdf (2.875Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
A common dynamical paradigm is that turbulence in the upper ocean is dominated by three classes of motion: mesoscale geostrophic eddies, internal waves and microscale three-dimensional turbulence. Close to the ocean surface, however, a fourth class of turbulent motion is important: submesoscale frontal dynamics. These have a horizontal scale of O(1–10) km, a vertical scale of O(100) m, and a time scale of O(1) day. Here we review the physical-chemical-biological dynamics of submesoscale features, and discuss strategies for sampling them. Submesoscale fronts arise dynamically through nonlinear instabilities of the mesoscale currents. They are ephemeral, lasting only a few days after they are formed. Strong submesoscale vertical velocities can drive episodic nutrient pulses to the euphotic zone, and subduct organic carbon into the ocean's interior. The reduction of vertical mixing at submesoscale fronts can locally increase the mean time that photosynthetic organisms spend in the well-lit euphotic layer and promote primary production. Horizontal stirring can create intense patchiness in planktonic species. Submesoscale dynamics therefore can change not only primary and export production, but also the structure and the functioning of the planktonic ecosystem. Because of their short time and space scales, sampling of submesoscale features requires new technologies and approaches. This paper presents a critical overview of current knowledge to focus attention and hopefully interest on the pressing scientific questions concerning these dynamics.
Date issued
2012-07
URI
http://hdl.handle.net/1721.1/75746
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Lévy, Marina et al. “Bringing Physics to Life at the Submesoscale.” Geophysical Research Letters 39.14 (2012).
Version: Author's final manuscript
ISSN
0094-8276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.