MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transport Model for Microfluidic Device for Cell Culture and Tissue Development

Author(s)
Inamdar, Niraj K.; Griffith, Linda G.; Borenstein, Jeffrey T.
Thumbnail
DownloadGriffith_Transport model.pdf (389.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In recent years, microfluidic devices have emerged as a platform in which to culture tissue for various applications such as drug discovery, toxicity testing, and fundamental investigations of cell-cell interactions. We examine the transport phenomena associated with gradients of soluble factors and oxygen in a microfluidic device for co-culture. This work focuses on emulating conditions known to be important in sustaining a viable culture of cells. Critical parameters include the flow and the resulting shear stresses, the transport of various soluble factors throughout the flow media, and the mechanical arrangement of the cells in the device. Using analytical models derived from first principles, we investigate interactions between flow conditions and transport in a microfluidic device. A particular device of interest is a bilayer configuration in which critical solutes such as oxygen are delivered through the media into one channel, transported across a nanoporous membrane, and consumed by cells cultured in another. The ability to control the flow conditions in this membrane bilayer device to achieve sufficient oxygenation without shear damage is shown to be superior to the case present in a single channel system. Using the results of these analyses, a set of criteria that characterize the geometric and transport properties of a robust microfluidic device are provided.
Date issued
2011
URI
http://hdl.handle.net/1721.1/76193
Department
Charles Stark Draper Laboratory; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
MRS Proceedings
Publisher
Cambridge University Press (Materials Research Society)
Citation
Inamdar, Niraj, Linda Griffith, and Jeffrey T. Borenstein. “Transport Model for Microfluidic Device for Cell Culture and Tissue Development.” MRS Proceedings 1299 (2011): 35-40.
Version: Final published version
ISSN
1946-4274

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.