MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride

Author(s)
Xue, Jiamin; Sanchez-Yamagishi, Javier; Bulmash, Daniel S.; Jacquod, Philippe; Deshpande, Aparna; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, Pablo; LeRoy, Brian J.; ... Show more Show less
Thumbnail
DownloadJarillo-Herrero_STM spectroscopy.pdf (2.348Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy–momentum dispersion relations which cross at the Dirac point1, 2. However, accessing the physics of the low-density region at the Dirac point has been difficult because of disorder that leaves the graphene with local microscopic electron and hole puddles3, 4, 5. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult6, 7. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance8. Here we use scanning tunnelling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moiré patterns. However, contrary to predictions9, 10, this conformation does not lead to a sizeable band gap because of the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron–hole charge fluctuations are reduced by two orders of magnitude as compared with those on silicon oxide. This leads to charge fluctuations that are as small as in suspended graphene6, opening up Dirac point physics to more diverse experiments.
Date issued
2011-02
URI
http://hdl.handle.net/1721.1/76347
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nature Materials
Publisher
Nature Publishing Group
Citation
Xue, Jiamin et al. “Scanning Tunnelling Microscopy and Spectroscopy of Ultra-flat Graphene on Hexagonal Boron Nitride.” Nature Materials 10.4 (2011): 282–285. Web.
Version: Author's final manuscript
ISSN
1476-1122
1476-4660

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.