Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
Author(s)
Yankowitz, Matthew; Xue, Jiamin; Cormode, Daniel; Sanchez-Yamagishi, Javier; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, Pablo; Jacquod, Philippe; LeRoy, Brian J.; ... Show more Show less
DownloadJarillo-Herrero_Emergence of.pdf (926.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The Schrödinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of bandgaps near points of the reciprocal lattice known as Brillouin zone boundaries1. However, in the case of massless Dirac fermions, it has been predicted that the chirality of the charge carriers prevents the opening of a bandgap and instead new Dirac points appear in the electronic structure of the material. Graphene on hexagonal boron nitride exhibits a rotation-dependent moiré pattern. Here, we show experimentally and theoretically that this moiré pattern acts as a weak periodic potential and thereby leads to the emergence of a new set of Dirac points at an energy determined by its wavelength. The new massless Dirac fermions generated at these superlattice Dirac points are characterized by a significantly reduced Fermi velocity. Furthermore, the local density of states near these Dirac cones exhibits hexagonal modulation due to the influence of the periodic potential.
Date issued
2012-03Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Physics
Publisher
Nature Publishing Group
Citation
Yankowitz, Matthew et al. “Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride.” Nature Physics 8.5 (2012): 382–386. Web.
Version: Author's final manuscript
ISSN
1745-2473
1745-2481