MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Initial Common Pathway of Inflammation, Disease, and Sudden Death

Author(s)
Davidson, Robert M.; Seneff, Stephanie
Thumbnail
DownloadDavidson-2012-The Initial Common P.pdf (1.194Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
In reviewing the literature pertaining to interfacial water, colloidal stability, and cell membrane function, we are led to propose that a cascade of events that begins with acute exogenous surfactant-induced interfacial water stress can explain the etiology of sudden death syndrome (SDS), as well as many other diseases associated with modern times. A systemic lowering of serum zeta potential mediated by exogenous cationic surfactant administration is the common underlying pathophysiology. The cascade leads to subsequent inflammation, serum sickness, thrombohemorrhagic phenomena, colloidal instability, and ultimately even death. We propose that a sufficient precondition for sudden death is lowered bioavailability of certain endogenous sterol sulfates, sulfated glycolipids, and sulfated glycosaminoglycans, which are essential in maintaining biological equipose, energy metabolism, membrane function, and thermodynamic stability in living organisms. Our literature review provides the basis for the presentation of a novel hypothesis as to the origin of endogenous bio-sulfates which involves energy transduction from sunlight. Our hypothesis is amply supported by a growing body of data showing that parenteral administration of substances that lower serum zeta potential results in kosmotropic cationic and/or chaotropic anionic interfacial water stress, and the resulting cascade.
Date issued
2012-08
URI
http://hdl.handle.net/1721.1/76366
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Entropy
Publisher
MDPI AG
Citation
Davidson, Robert M., and Stephanie Seneff. “The Initial Common Pathway of Inflammation, Disease, and Sudden Death.” Entropy 14.12 (2012): 1399–1442.
Version: Final published version
ISSN
1099-4300

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.