Show simple item record

dc.contributor.authorWang, Lifeng
dc.contributor.authorOrtiz, Christine
dc.contributor.authorBoyce, Mary Cunningham
dc.date.accessioned2013-01-29T21:47:47Z
dc.date.available2013-01-29T21:47:47Z
dc.date.issued2010-12
dc.date.submitted2010-08
dc.identifier.issn0094-4289
dc.identifier.urihttp://hdl.handle.net/1721.1/76633
dc.description.abstractThe force-depth behavior of indentation into fibrillar-structured surfaces such as those consisting of forests of micro- or nanoscale tubes or rods is a depth-dependent behavior governed by compression, bending, and buckling of the nanotubes. Using a micromechanical model of the indentation process, the effective elastic properties of the constituent tubes or rods as well as the effective properties of the forest can be deduced from load-depth curves of indentation into forests. These studies provide fundamental understanding of the mechanics of indentation of nanotube forests, showing the potential to use indentation to deduce individual nanotube or nanorod properties as well as the effective indentation properties of such nanostructured surface coatings. In particular, the indentation behavior can be engineered by tailoring various forest features, where the force-depth behavior scales linearly with tube areal density (m, number per unit area), tube moment of inertia (I), tube modulus (E), and indenter radius (R) and scales inversely with the square of tube length (L[superscript 2]), which provides guidelines for designing forests whether to meet indentation stiffness or for energy storage applications in microdevice designs.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies Contract (W911NF-07-D- 0004)en_US
dc.language.isoen_US
dc.publisherASME Internationalen_US
dc.relation.isversionofhttp://dx.doi.org/10.1115/1.4002648en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceASMEen_US
dc.titleMechanics of Indentation into Micro- and Nanoscale Forests of Tubes, Rods, or Pillarsen_US
dc.typeArticleen_US
dc.identifier.citationWang, Lifeng, Christine Ortiz, and Mary C. Boyce. “Mechanics of Indentation into Micro- and Nanoscale Forests of Tubes, Rods, or Pillars.” Journal of Engineering Materials and Technology 133.1 (2011): 011014. ©2011 American Society of Mechanical Engineersen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorWang, Lifeng
dc.contributor.mitauthorOrtiz, Christine
dc.contributor.mitauthorBoyce, Mary Cunningham
dc.relation.journalJournal of Engineering Materials and Technologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, Lifeng; Ortiz, Christine; Boyce, Mary C.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3511-5679
dc.identifier.orcidhttps://orcid.org/0000-0002-2193-377X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record