| dc.contributor.author | Muzzey, Dale | |
| dc.contributor.author | Gomez-Uribe, Carlos A. | |
| dc.contributor.author | Mettetal, Jerome T. | |
| dc.contributor.author | van Oudenaarden, Alexander | |
| dc.date.accessioned | 2013-01-30T21:14:37Z | |
| dc.date.available | 2013-01-30T21:14:37Z | |
| dc.date.issued | 2009-07 | |
| dc.identifier.issn | 0092-8674 | |
| dc.identifier.issn | 1097-4172 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/76690 | |
| dc.description | available in PMC 2011 June 7. | en_US |
| dc.description.abstract | Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback (“integral feedback”) ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Graduate Research Fellowship) | en_US |
| dc.description.sponsorship | Massachusetts Institute of Technology (MIT-Merck Graduate Fellowship) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (NIH grant R01-GM068957) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (NIH grant 5 R90 DK071511-01) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Elsevier B.V. | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/j.cell.2009.04.047 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
| dc.source | PMC | en_US |
| dc.title | A systems-level analysis of perfect adaptation in yeast osmoregulation | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Muzzey, Dale et al. “A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation.” Cell 138.1 (2009): 160–171. Web. | en_US |
| dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
| dc.contributor.mitauthor | Muzzey, Dale | |
| dc.contributor.mitauthor | Gomez-Uribe, Carlos A. | |
| dc.contributor.mitauthor | Mettetal, Jerome T. | |
| dc.contributor.mitauthor | van Oudenaarden, Alexander | |
| dc.relation.journal | Cell | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Muzzey, Dale; Gómez-Uribe, Carlos A.; Mettetal, Jerome T.; van Oudenaarden, Alexander | en |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |