Show simple item record

dc.contributor.authorMuzzey, Dale
dc.contributor.authorGomez-Uribe, Carlos A.
dc.contributor.authorMettetal, Jerome T.
dc.contributor.authorvan Oudenaarden, Alexander
dc.date.accessioned2013-01-30T21:14:37Z
dc.date.available2013-01-30T21:14:37Z
dc.date.issued2009-07
dc.identifier.issn0092-8674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/76690
dc.descriptionavailable in PMC 2011 June 7.en_US
dc.description.abstractNegative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback (“integral feedback”) ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (MIT-Merck Graduate Fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant R01-GM068957)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant 5 R90 DK071511-01)en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2009.04.047en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleA systems-level analysis of perfect adaptation in yeast osmoregulationen_US
dc.typeArticleen_US
dc.identifier.citationMuzzey, Dale et al. “A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation.” Cell 138.1 (2009): 160–171. Web.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorMuzzey, Dale
dc.contributor.mitauthorGomez-Uribe, Carlos A.
dc.contributor.mitauthorMettetal, Jerome T.
dc.contributor.mitauthorvan Oudenaarden, Alexander
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMuzzey, Dale; Gómez-Uribe, Carlos A.; Mettetal, Jerome T.; van Oudenaarden, Alexanderen
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record