Solitary Waves and Their Linear Stability in Nonlinear Lattices
Author(s)
Akylas, Triantaphyllos R.; Hwang, G.; Yang, J.
DownloadAkylas_Solitary waves.pdf (212.1Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, which span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, hinge upon a certain recurrence relation which contains information beyond all orders of the usual two-scale perturbation expansion. It follows that only two such positions are permissible, and of those two solitary waves, one is linearly stable and the other unstable. For a cosine lattice, in particular, the two possible solitary waves are centered at a maximum or minimum of the lattice, with the former being stable, and the analytical predictions for the associated linear stability eigenvalues are in excellent agreement with numerical results. Furthermore, a countable set of multi-solitary-wave bound states are constructed analytically. In spite of rather different physical settings, the exponential asymptotics approach followed here is strikingly similar to that taken in earlier studies of solitary wavepackets involving a periodic carrier and a slowly varying envelope, which underscores the general value of this procedure for treating multiscale solitary-wave problems.
Date issued
2011-11Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Studies in Applied Mathematics
Publisher
Wiley Blackwell
Citation
Hwang, G., T. R. Akylas, and J. Yang. “Solitary Waves and Their Linear Stability in Nonlinear Lattices.” Studies in Applied Mathematics 128.3 (2012): 275–298.
Version: Author's final manuscript
ISSN
0022-2526
1467-9590