Show simple item record

dc.contributor.authorJhuang, Hueihan
dc.contributor.authorGarrote, Estibaliz
dc.contributor.authorEdelman, Nicholas
dc.contributor.authorPoggio, Tomaso A.
dc.contributor.authorSteele, Andrew
dc.contributor.authorSerre, Thomas J.
dc.date.accessioned2013-01-31T19:26:28Z
dc.date.available2013-01-31T19:26:28Z
dc.date.issued2010-08
dc.identifier.isbn978-1-60558-926-8
dc.identifier.isbn1605589268
dc.identifier.isbn9074821863
dc.identifier.isbn9789074821865
dc.identifier.urihttp://hdl.handle.net/1721.1/76704
dc.description.abstractWe describe a fully trainable computer vision system enabling the automated analysis of complex mouse behaviors. Our system computes a sequence of feature descriptors for each video sequence and a classifier is used to learn a mapping from these features to behaviors of interest. We collected a very large manually annotated video database of mouse behaviors for training and testing the system. Our system performs on par with human scoring, as measured from the ground-truth manual annotations of thousands of clips of freely behaving mice. As a validation of the system, we characterized the home cage behaviors of two standard inbred and two nonstandard mouse strains. From this data, we were able to predict the strain identity of individual mice with high accuracy.en_US
dc.description.sponsorshipCalifornia Institute of Technology. Broad Fellows Program in Brain Circuitryen_US
dc.description.sponsorshipNational Science Council of Taiwan (TMS-094-1-A032)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1931344.1931377en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceKathleen Sullivanen_US
dc.titleTrainable, vision-based automated home cage behavioral phenotypingen_US
dc.typeArticleen_US
dc.identifier.citationJhuang, Hueihan et al. “Trainable, Vision-based Automated Home Cage Behavioral Phenotyping.” in Measuring Behavior '10: Selected papers from the Proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research, Article No. 33, ACM Press, 2010. 1–4. Web.en_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.approverPoggio, Tomaso
dc.contributor.mitauthorEdelman, Nicholas
dc.contributor.mitauthorSerre, Thomas
dc.contributor.mitauthorGarrote, Estibaliz
dc.contributor.mitauthorPoggio, Tomaso A.
dc.contributor.mitauthorJhuang, Hueihan
dc.relation.journalMeasuring Behavior '10: selected papers from the proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research, Article No. 33en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsJhuang, Hueihan; Garrote, Estibaliz; Edelman, Nicholas; Poggio, Tomaso; Steele, Andrew; Serre, Thomasen
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record