MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-Molecule Approaches to Stochastic Gene Expression

Author(s)
Raj, Arjun; van Oudenaarden, Alexander
Thumbnail
Downloadvan Oudenaarden_Single molecule.pdf (2.440Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Both the transcription of mRNAs from genes and their subsequent translation into proteins are inherently stochastic biochemical events, and this randomness can lead to substantial cell-to-cell variability in mRNA and protein numbers in otherwise identical cells. Recently, a number of studies have greatly enhanced our understanding of stochastic processes in gene expression by utilizing new methods capable of counting individual mRNAs and proteins in cells. In this review, we examine the insights that these studies have yielded in the field of stochastic gene expression. In particular, we discuss how these studies have played in understanding the properties of bursts in gene expression. We also compare the array of different methods that have arisen for single mRNA and protein detection, highlighting their relative strengths and weaknesses. In conclusion, we point out further areas where single-molecule techniques applied to gene expression may lead to new discoveries.
Date issued
2009-02
URI
http://hdl.handle.net/1721.1/76708
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Annual Review of Biophysics
Publisher
Annual Reviews
Citation
Raj, Arjun, and Alexander van Oudenaarden. “Single-Molecule Approaches to Stochastic Gene Expression.” Annual Review of Biophysics 38.1 (2009): 255–270. Web.
Version: Author's final manuscript
ISSN
1936-122X
1936-1238

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.