Show simple item record

dc.contributor.authorWilczek, Frank
dc.date.accessioned2013-02-05T20:13:02Z
dc.date.available2013-02-05T20:13:02Z
dc.date.issued2012-10
dc.date.submitted2012-07
dc.identifier.issn1895-1082
dc.identifier.issn1644-3608
dc.identifier.urihttp://hdl.handle.net/1721.1/76733
dc.description.abstractNewtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. That mass-concept is tremendously useful in the approximate description of baryon-dominated matter at low energy — that is, the standard “matter” of everyday life, and of most of science and engineering — but it originates in a highly contingent and non-trivial way from more basic concepts. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). Additional quantitatively small, though physically crucial, contributions come from the intrinsic masses of elementary quanta (electrons and quarks). The equations for massless particles support extra symmetries — specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (W and Z bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of W and Z boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass m [subscript H] ≈ 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with m H ≈ 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Contract DE-FG02-05ER41360)en_US
dc.language.isoen_US
dc.publisherVersita (Central European Science Journals)en_US
dc.relation.isversionofhttp://dx.doi.org/10.2478/s11534-012-0121-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleOrigins of massen_US
dc.typeArticleen_US
dc.identifier.citationWilczek, Frank. “Origins of Mass.” Central European Journal of Physics 10.5 (2012): 1021–1037.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorWilczek, Frank
dc.relation.journalCentral European Journal of Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWilczek, Franken
dc.identifier.orcidhttps://orcid.org/0000-0002-6489-6155
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record