Improved spectroscopic parameters for transiting planet hosts
Author(s)
Winn, Joshua Nathan; Torres, Guillermo; Fischer, Debra A.; Sozzetti, Alessandro; Buchhave, Lars A.; Holman, Matthew J.; Carter, Joshua Adam; ... Show more Show less
DownloadWinn_Improved spectroscopic.pdf (869.4Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the stellar parameter classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (Spectroscopy Made Easy (SME) and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between T [subscript eff], [Fe/H], and log g when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on log g based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius.
Date issued
2012-09Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space ResearchJournal
Astrophysical Journal
Publisher
IOP Publishing
Citation
Torres, Guillermo et al. “Improved Spectroscopic Parameters For Transiting Planet Hosts.” The Astrophysical Journal 757.2 (2012): 161.
Version: Author's final manuscript
ISSN
0004-637X
1538-4357