Show simple item record

dc.contributor.authorFarhi, Edward
dc.contributor.authorShor, Peter W.
dc.contributor.authorGosset, David Nicholas
dc.contributor.authorHen, Itay
dc.contributor.authorSandvik, A. W.
dc.contributor.authorYoung, A. P.
dc.contributor.authorZamponi, Francesco
dc.date.accessioned2013-02-13T17:06:09Z
dc.date.available2013-02-13T17:06:09Z
dc.date.issued2012-11
dc.date.submitted2012-08
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/76798
dc.description.abstractIn this paper we study the performance of the quantum adiabatic algorithm on random instances of two combinatorial optimization problems, 3-regular 3-XORSAT and 3-regular max-cut. The cost functions associated with these two clause-based optimization problems are similar as they are both defined on 3-regular hypergraphs. For 3-regular 3-XORSAT the clauses contain three variables and for 3-regular max-cut the clauses contain two variables. The quantum adiabatic algorithms we study for these two problems use interpolating Hamiltonians which are amenable to sign-problem free quantum Monte Carlo and quantum cavity methods. Using these techniques we find that the quantum adiabatic algorithm fails to solve either of these problems efficiently, although for different reasons.en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.86.052334en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titlePerformance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphsen_US
dc.typeArticleen_US
dc.identifier.citationFarhi, Edward et al. “Performance of the Quantum Adiabatic Algorithm on Random Instances of Two Optimization Problems on Regular Hypergraphs.” Physical Review A 86.5 (2012). © 2012 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorFarhi, Edward
dc.contributor.mitauthorShor, Peter W.
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFarhi, Edward; Gosset, David; Hen, Itay; Sandvik, A. W.; Shor, Peter; Young, A. P.; Zamponi, Francescoen
dc.identifier.orcidhttps://orcid.org/0000-0002-7309-8489
dc.identifier.orcidhttps://orcid.org/0000-0003-4626-5648
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record