Show simple item record

dc.contributor.authorHosur, Raghavendra
dc.contributor.authorPeng, Jian
dc.contributor.authorVinayagam, Arunachalam
dc.contributor.authorStelzl, Ulrich
dc.contributor.authorXu, Jinbo
dc.contributor.authorPerrimon, Norbert
dc.contributor.authorBienkowska, Jadwiga R.
dc.contributor.authorBerger, Bonnie
dc.date.accessioned2013-03-05T18:49:57Z
dc.date.available2013-03-05T18:49:57Z
dc.date.issued2012-08
dc.date.submitted2012-07
dc.identifier.issn1465-6906
dc.identifier.issn1474-7596
dc.identifier.urihttp://hdl.handle.net/1721.1/77555
dc.description.abstractImproving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer-related or damaging SNPs.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01GM081871)en_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/gb-2012-13-8-r76en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleCoev2Net: a computational framework for boosting confidence in high-throughput protein-protein interaction datasetsen_US
dc.typeArticleen_US
dc.identifier.citationHosur, Raghavendra et al. “A Computational Framework for Boosting Confidence in High-throughput Protein-protein Interaction Datasets.” Genome Biology 13.8 (2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorHosur, Raghavendra
dc.contributor.mitauthorPeng, Jian
dc.contributor.mitauthorBerger, Bonnie
dc.relation.journalGenome Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2013-02-28T20:02:56Z
dc.language.rfc3066en
dc.rights.holderRaghavendra Hosur et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsHosur, Raghavendra; Peng, Jian; Vinayagam, Arunachalam; Stelzl, Ulrich; Xu, Jinbo; Perrimon, Norbert; Bienkowska, Jadwiga; Berger, Bonnieen
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record