dc.contributor.author | Hosur, Raghavendra | |
dc.contributor.author | Peng, Jian | |
dc.contributor.author | Vinayagam, Arunachalam | |
dc.contributor.author | Stelzl, Ulrich | |
dc.contributor.author | Xu, Jinbo | |
dc.contributor.author | Perrimon, Norbert | |
dc.contributor.author | Bienkowska, Jadwiga R. | |
dc.contributor.author | Berger, Bonnie | |
dc.date.accessioned | 2013-03-05T18:49:57Z | |
dc.date.available | 2013-03-05T18:49:57Z | |
dc.date.issued | 2012-08 | |
dc.date.submitted | 2012-07 | |
dc.identifier.issn | 1465-6906 | |
dc.identifier.issn | 1474-7596 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/77555 | |
dc.description.abstract | Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer-related or damaging SNPs. | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant R01GM081871) | en_US |
dc.publisher | BioMed Central Ltd | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1186/gb-2012-13-8-r76 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/2.0 | en_US |
dc.source | BioMed Central Ltd | en_US |
dc.title | Coev2Net: a computational framework for boosting confidence in high-throughput protein-protein interaction datasets | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hosur, Raghavendra et al. “A Computational Framework for Boosting Confidence in High-throughput Protein-protein Interaction Datasets.” Genome Biology 13.8 (2012). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.mitauthor | Hosur, Raghavendra | |
dc.contributor.mitauthor | Peng, Jian | |
dc.contributor.mitauthor | Berger, Bonnie | |
dc.relation.journal | Genome Biology | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2013-02-28T20:02:56Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Raghavendra Hosur et al.; licensee BioMed Central Ltd. | |
dspace.orderedauthors | Hosur, Raghavendra; Peng, Jian; Vinayagam, Arunachalam; Stelzl, Ulrich; Xu, Jinbo; Perrimon, Norbert; Bienkowska, Jadwiga; Berger, Bonnie | en |
dc.identifier.orcid | https://orcid.org/0000-0002-2724-7228 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |