Show simple item record

dc.contributor.authorUlitsky, Igor
dc.contributor.authorShkumatava, Alena
dc.contributor.authorJan, Calvin H.
dc.contributor.authorSubtelny, Alexander Orest
dc.contributor.authorKoppstein, David Neal Pira
dc.contributor.authorBell, George W.
dc.contributor.authorSive, Hazel L.
dc.contributor.authorBartel, David
dc.date.accessioned2013-03-07T18:22:38Z
dc.date.available2013-03-07T18:22:38Z
dc.date.issued2012-06
dc.date.submitted2012-02
dc.identifier.issn1088-9051
dc.identifier.urihttp://hdl.handle.net/1721.1/77596
dc.description.abstractThe post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3′ untranslated regions (3′ UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-seq reads substantially increased and improved existing 3′ UTR annotations, resulting in confidently identified 3′ UTRs for >79% of the annotated protein-coding genes in zebrafish. mRNAs from most zebrafish genes undergo alternative CPA, with those from more than a thousand genes using different dominant 3′ UTRs at different stages. These included one of the poly(A) polymerase genes, for which alternative CPA reinforces its repression in the ovary. 3′ UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3′ UTRs are highly expressed in the ovary, yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3′ UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At 2 h post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3′ UTRs provide a resource for studying gene regulation during vertebrate development.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM067031))en_US
dc.language.isoen_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1101/gr.139733.112en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceGenome Researchen_US
dc.titleExtensive alternative polyadenylation during zebrafish developmenten_US
dc.typeArticleen_US
dc.identifier.citationUlitsky, I. et al. “Extensive Alternative Polyadenylation During Zebrafish Development.” Genome Research 22.10 (2012): 2054–2066.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Scienceen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorXie, Igor
dc.contributor.mitauthorShkumatava, Alena
dc.contributor.mitauthorJan, Calvin H.
dc.contributor.mitauthorSubtelny, Alexander Orest
dc.contributor.mitauthorKoppstein, David Neal Pira
dc.contributor.mitauthorBell, George W.
dc.contributor.mitauthorSive, Hazel L.
dc.contributor.mitauthorBartel, David
dc.relation.journalGenome Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsUlitsky, I.; Shkumatava, A.; Jan, C. H.; Subtelny, A. O.; Koppstein, D.; Bell, G. W.; Sive, H.; Bartel, D. P.en
dc.identifier.orcidhttps://orcid.org/0000-0002-3872-2856
dc.identifier.orcidhttps://orcid.org/0000-0002-4890-424X
dc.identifier.orcidhttps://orcid.org/0000-0001-5029-5909
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record